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A DIFFUSION APPROXIMATION MODEL

FOR A COt4IUNICATION SYSTEM
ALLOWING MESSAGE INTERFERENCE

Donald P. Gayer
Nava l Postgraduate School

John P. Lehoczky
Carnegie-Mellon University

1. Introduction and Problem Statement

We study the operating characteristics of an element of a complex comun-

ication system, the element consisting of c channels which service an

arrival stream of messages. When a message arri ves , it selects a channel at

random and initiates a transmission (service) time of random duration . If by

chance the channel selected is already occupied , i.e. is in the process of

transmiss ion, both messages may be “destroyed,” i.e. terminated before com-

pletion , and the channel reverts to an empty or open condition . The trans-

mi tters of the messages are capable of detecti ng the event of destruction ,

and following such an event go into a re-try or re-transmission population ,

from which they later make attempts to occupy a channel and eventually com-

plete message transmission . We develop an approximate probability model to

describe the performance of such a system. The approximation tends to become

exact as the number of channels , c , becomes large (c-~co) , but numeri cal

studies indi cate that i t  may be quite adequate for c near ten.

The above problem bears close resemblance to a probl em of packet switching

Of data on the ARPANET and, very likely, on other satellite comunications

systems , as discussed in Kleinrock (1976), p. 362 ff. We choose to represent

• 4 
the various interacting populations of messages , i.e. those in process, and
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• those in the re-try population , by means of stochastic differential equa-

tions as was done by Gayer and Lehoczky (1976) for a related problem.
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2. Mathematical Formulations: Model 1

Assume that messages arri ve at a system of c channels according to a

non-homogeneous Poisson process of rate cA(t) ; that is , the probability

that a message arrives in (t, t+dt) is cX(t)dt + o(dt) . Each message

then selects a channel at random ; any particular channel , whether occupied or

not, is selected wi th probability c~ . If the channel is unoccupied the

message begins transmission; the probability that it completes in time

(t, t+dt) is i.~(t)dt + o(dt) . Note that if i.i(t) = ~j  , constant , the

messages enjoy exponential service times, and if we wish to generate other ,

say Erlang , service times the device of phases , or extra artificial compart-

ments , may be used , as in Gayer and Lehoczky (1976).

If a message in progress on a channel is interrupted by the arrival of

another message, both are assumed instantly destroyed , and the message initi-

ators are transferred to a re-try population , R . A message that has entered

R changes its status at time t with probability v(t)dt + o(dt) : with

probability c(t) the change of status implies an attempt to re-transmi t

on a channel , and with probability &(t) = 1-aCt) the change of status

implies loss -- the message may no longer be worth transmi tti ng .
Our representation of the above setup is in terms of the following state

variables .

Q(t) = the number of messages being transmi tted , i.e. occupying channel s,
at time t ; clearl y 0 �~~(t) � c . (2.1)

~(t) = the number of messages in R at time t ; 0 � R(t) <

L(t) = the total number of messages that have been lost by time t
o � L (t)

The state of the system is thus (Q(t), R(t), L( t)) , a discrete vector-

• valued Markov process , according to our earlier assumptions . We shall

characterize this process approximately when c-~ , and shall in particular

1
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treat Q , R and L as continuous stochast ic processes , in fact as

diffusion processes , see Arnold (1974) .

Here is a formalization of the transitions descri bed earlier:

Transition Probability
(in t, t+~tJ

2(t)(9~ ~~
, ) -* (Q+l , R, L) cX (t)[l-—~-—]dt

Q(t)
(Q-l , R+2, 1) cA (t)

~ -E—- dt

(9-1 , R , ) u(t)Q(t)dt (2.2)

-
~
. (Q+1 , R-l , L) v(t)a(t)[ l -~~R(t)dt

-
~ (Q- 1 , R+l , L) v(t)a(t)~~(t)dt

-‘ (Q, R-l , L+l ) v(t)&(t)R(t)dt

Other transitions have negligible probability of occurring in (t, t+dt)

Now in principle one can write down Kolmogorov equations for the transition

probabilities of the (Q, R, L) process and solve them . However , such a

solution must inevitably be numerical . Here we shall write down an approxi-

mate system of Ito stochastic di fferential equations , see Arnold (l974)~ to

— 
describe process evolution , and from them deduce certain useful i nformation

valid when c is large. We write , on the basis of (2.2),

Q(t) Q(t) Q(t)
dQ(t) = {cX(t)[l-~~—--] - cX (t)

’
~— - ii(t)Q(t) +

Q(t)
• 

- v(t)ct(t)
~c
H
~
(t)}dt

+ /
~~~~~9(t) dW1(t) 

- /x(t)~~~ d~~(t)

- ~~~~Q(~ dW 3 (t) + /v(t)a(t)f1-~~~]R(t) d~~(t)

- ~/(t(t)ct(tF~—~ .(t) d~~(t) (2.3)

4
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Q(t) Q(t)
dR(t) = (2 cX( tr  - v(t)a(t)fl-~~ ~R(t)c c _

Q(t)
+ v(t)a(t~~—R (t) - v(t)&(t)R(t)}dt

/ Q(t) /
+ 2/cX(t)~~— dW2(t) 

- /v(t)a(t)[l_ ~~~~~~
— ]R(t) d~~(t)

Q(t)
+ /v(t)a(t)~~—R(t) dW5(t) - /v(t)&(t)R(t) dW 6 (t) ,

dL(t) = v(t)&(t)R(t)dt + /v(t)cz(t)R(t) d~~(t)

where (w 1(t), o�t, 1=1 , 2, .. 6) is a 6 dimensional standard Wiener process

whose components are independent.

The rationale for writing (2.3) is as follows . Each term in the brack-

etted part of the expression for, say , dQ , is a component of the dri ft

or expected change in Q between t and t+dt ; e.g. cA (t)[l- is

the expected increase in Q caused by a newly arrived message imediately
Q(t)

-• reaching an empty channel (line 1 of (2.2)), while cA (tY
~E— 

represents

the decrease in Q caused by a new message that arrives and chooses a busy

channel , only to be irmiediately transferred to R , along with the message

in progress (see line 2 of (2.2)). The coefficients of the Wiener process

terms are proportional to the standard deviations of the motions in

(t, t+dt) corresponding to the drift terms .

Next, introduce an expansion of (Q, R , L) to terms of order TE
—

Define the stochastic noise processes by

4
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Q(t) - cq(t)
X(t)  = —

—

R(t) - cr(t)
Y(t) = (2.4)
—

L(t) - cZ(t)

the vector (q(t), r(t), 2.(t)) = u r n  (9(t)/c, R(t)/c, L(t)/c) ; the exis-
c-)~

tence of these limi ting functions is suggested by resul ts of Kurtz (1971).

An application of Ito ’s l emma , Arnold (1974), p. 90, provides a sto-

chastic differential equation (s.d.e.) for (X , Y , Z) as follows (hereafter

we do not explicitly express the t-de pendence):

dX - (2A + p + 2czvr) civ (l-2q) X

dY = 2A + 2avr •av(1-2q ) - V +

dZ 0

q ’ - A (l-2q) + jiq - avr(1-2q )
(2.5)

- v1E r ’ - 2Xq + cxvr(l-2q) - avr +

2.’ - czvr

,‘~(l-q) -v~~ 
-

~~‘ Vavr(l-q) -v~~ii~~ 0

•

0 2v~~ 0 ,/ctv (l-q) 1A~~j~ ‘c~~

• 0 0 0 0 0

I
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Now the coefficient of /E must be identically zero , for otherwise our

system of equations does not converge . This leads to the

Deterministic Equations:

q ’(t) = A (l-2q) - pq + avr (l-2q)

r ’ ( t )  = 2Aq - avr (l-2q) - &vr (2.6)

= &vr

The solutions to these equations , which must be obtained by numerical inte-

gration , provide a determi nistic approximation to (Q, R , L) -- in fact,

(cq, cr, c9..) : (EEQ], E[R1, E[Li).

Stochastic Equations:

In view of (2.6), (2.5) now appears in the form

dx X

dY = A Y dt + B dW’ (2.7)

dZ 

~~

~~ 
(a 3 x 2 matrix) being identified as the coefficient of (X, Y , Z)’

and Bt (a 3 x 6 matrix) identifi ed as the coefficient of the Wiener process

term, in (2.5). Next note that the s.d.e. has a special form if the Z

term is omi tted; it is reasonable to focus on X and V , for clearl y

£(t)-Ico as t-4co , since L represents cumulative losses . Thus we shall be

i nterested in the first two equations in (2.6), and in (2.7) which we now

wri te as

dX X
p.. p..

= C  d t + D d W  (2.8)—t
dY V

7
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and C (2 x 2) is A without its last row , while D (2 x 6) is B—t

without its last row. Now the bivariate stochastic process described by

(2.8) is nonstationary Ornstein Uhlenbeck , since has eigenvalues with

non-negative real parts ; see Arnold (1974), Sec. 8.3, for an account of the

scalar case , or see Schach and McNei l (1973). Much that is useful is known

about this process. In particular , if (X(O), Y(O)) = 0 , and q(0), r(O)

are given , then for all t>O (X(t), Y(t)) has a bivariate normal distri-

bution with mean 0 and covariance matrix which satisfies the differ-

ential equation

= 

~t~t + ~~~ + DtD~ 
(2.9)

see Arnold (1974), Sec. 8.2.

Combining these facts leads to the

Resul t: (9, R) is approximately bivariate normal (Gaussian), as c-’~ :

(9(t), R(t)) N(c(q,r), cEt) (2.10)

From this expression it is possib le to estimate the probabilit y that at

least a specified number of channels are occupied at time t , and also to

estimate the probability that there are no more than any specified number of

customers awaiting re-try. Such quantities are useful measures of system

performance. Of course both the deterministic equat ons (2.6) and the

equati on (2.9) for the covariance matrix must be solved numerically,

but this shoul d be a 1e~s difficul t step than is the simulation of such a

system.

Steady-State Results:

Suppose A(t)-+A , p(t)÷p , v(t)+v , a(t)—”ct all positive constants ,: as t-~o . In this case it may happen that q(t)~q and r(t)-+r , the latter

satisfying (2.6) with derivatives set equal to zero :

I
-
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0I



O = X (l-2q ) - pq + avr(l-2q ) (2.11)

O = 2Xq - avr(l-2q) - &vr (2.12)

and these are immediately solved to give

q = 
(1+2p) - ./(l+2p)2- 8ap 

= ______________________

4a (l+2p) + V (1+2p)z_ Bpa

r = (2.13)
a n

where p = X/p and n = v/ i .~ , and provided that the numeri cal results ob-

tained are feasible: O�q�l , 0�r<c° . From (2.10), it is necessary that

q < in order for a steady state to exist.

When steady state conditions hold ~~=O , so the steady state co-

variance matrix , E , is the unique positive definite sol ution of

-.oo ’ = CE + ~c’ (2.14)

where

-(2A + p + 2avr) ctv (l-2q)c = (2.15)
2A + 2aur -cv (1-2q) -

and

A + p q + c t ~r - ( 2 X q + c tv r )
DD’= (2.16)

-(2Xq + avr) 4Aq + ‘or
• wri ting

a a
= 

[ a ~ a~~
] 

(2.17)

we may express the solution of (2.14) as follows :

a b(a+b-d) 2b2 b2 X + pq + avr

a = bd 2ab ab -(2Xq + czvr) (2.18)

a d2 2ad a(a+b) - bd 4Aq + yr
2 2

* 
9
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r ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where

a = 2 A + p + 2 c z v r  , d 2A + 2ctvr
(2.19)

b = av(l-2q ) , = 2ab(d-a-b) + 2b2d

The values of q and r are available from (2.1..~,. From these resul ts

actual numerical expressions for the steady state probability distri butions

of Q and R may be computed . Notice that the long-run loss or defection

rate of the final equation of (2.6) i .e. c2.’ (co) = cvr , where r comes

from (2.13).

4.
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3. Model 2: Intelligent Re-tries

Many variations are possible on the process that leads to Model 1.

These are of interest because they represent possibilities for improved

performance, or because they describe real system behavior.

In the model of the present section we suppose that re-tries are in-

telligent: a message in category R that attempts to seize a channel

again does not do so at random , wi th a chance of destroying a message in

progress. To represent this change , remove in (2.2) the possibility of the

transitions involving ct(t): (Q, R , L) + (Q+l , R-l , L), + (Q-l , R+1 , L),

and -‘~ (Q, R-l , L+1) , replacing wi th the transition rate

Q(t), R -
~ Q(t) + 1 , R(t) — 1 , probability v(t)R(t)[1 - ~-)dt (3.1)

Effectively this change in Model 1 prevents losses , and , when a re-try

prepares to access an occupied channel , it senses the presence of the on-

going message, and refrains before destruction.

This model can be analyzed by the technique described for Model 1 ,

namely that of setting up approximating Ito-type stochastic differential

equations , and then carrying out an expansion for c -
~ 

. The results are

as follows .

Deterministi c Component:

We find that for Model 2

q ’(t) = A(1-2q) - pq + vr(l-q)
(3.2)

r’(t) = 2Aq - vr(1-q)

Stochastic Component:

Use of the representation (2.4) together with the stochastic differ-

ential equations and Ito ’s l emma yields

dX X
= At + BtdWt ‘ (3.3)

dY V

I
11
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the s.d.e. for a non-stationary Ornstein-Uhlenbeck process. In this case

(suppressing t-dependence),

-(2A + p + vr) v( l-q)
At = (3.4)

2X + yr -‘~(l-q )

/A(l -q) -i~~ -/Si~ /vr(1-q)
B = 

_______ 
(3.5)

0 2v~~ 0 -/vr(l-q)

and

= (
~~1~~

”
~~ ’ ~ 2

(t), W
3
(t), w4(t )) ’ , (3.6)

a 4-dimensional standard Wiener process with independent components .

Once again the equation (2.9) may be solved for the covariance function

with substituted for C~, and i n pl ace of . And once

again we state the

Resul t: (Q, R) is approximately bivariate normal as c

(Q, R) -. N(c(q, r), cEt ) ’  (3.7)

Steady-State Results:

If A (t) -~~ A , p(t) ÷ p , ‘u(t) -‘~ ‘o as t ÷ , then it may happen that

q(t) + q , and r(t) -~ r , these satisfying the equations (3.2) wi th

q ’ = r ’ = 0 . The solutions are easily obtained , and are

• - A = 2A 2 
= 

2p2 . (3 8)q — — p , r - 

v (p-A ) — 

~(l-p)

apparently it is necessary that q = p < 1 for steady state to occur.

Note that in Model 1 it was necessary that q < 1/2 in order that steady

state conditions occur. If we compare Models 1 and 2 when a = 1 we find

12
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ -~~—-~~~~~~ -—- -

Model 1 Model 2

q = p ,  ( O< p < ~~) q = p , ( 0 <p < l )

— 2p2 2p2
r — n(l...2pJ 

— 

r~(l—p )

Clearly the setup of Model 2 resul ts in considerably smaller expected wait

per unit time (approximated by c(qi-r)) than does that of Model 1. The

improved service must be purchased in return for investment in the busy

channel sensing capacity . The Model 2 can be compared to the model of Gayer

and Lehoczky (1976).

The steady state covar iance matrix , E , is obtained from (2.14),

replacing C by A , and D by B . We fi nd that

a b(a+b-d) 2b2 b2 
- - 

A + pq + vr(l-q) 
-

11

a = bd 2ab ab -(2Aq + ‘or(l-q) ) (3.9)

a d2 2ad a(a+b)-bd 4Aq + vr(1-q)
22 

-

where

a = 2A + p + ‘or , b = v(1-q)
(3.10)

d = 2A + ‘or , A = 2ab(d-a-b) + 2b2d

~~

,

4,
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4. Model 3: Transitory Version of Model 1.

Consider next a transitory service system version of the basic Model 1.

There are N messages to be transmi tted, and each initially is transmi tted

independently and at a time having absolutely continuous distributi on function

F(t) , wi th F(O+) = 0 , and density f (t) . Once a given message is trans-

mi tted, no more appear from its particular source , so even though some

messages enter the re-try population one or more times , the traffic gradu-

ally fades away; the problem is fundamentally non-stationary . For analysis

of a similar problem see Gayer, Lehoczky , and Perlas (1975).

The following state variables are required .

1(t) = the number of message arrivals that have occurred by time t

O � 1(t) � N -

9(t) = the number of messages being transmitted at time t

O � 9( t) � c

R(t) = the number of messages in the re-try population at time t

We assume,as we did in formulating Model 1, that if a newly arriving message

encounters a channel -- selected at random -- hel d by a message in progress ,

then both are instantly “destroyed ,” and irmiediately join R . No messages

are eve r lost. Messages in R re-try at rate v (t)R (t)

The transition scheme is given below . The individual message arri val

rate at time t is seen to be A (t)  = f(t)/[l-F(t)]

• Transition Probability
(t to t+dt)

Q
(I, Q, R) + (1+1, 9+1, R) x(t)[N - I(tfl[l - ~~dt

Q
(1+1 , 9—1 , R+2) A ( t ) [ N  - I(t)]~-dt

-I~ (I, Q-l , R) p (t)Qdt (4.1)- - Q
+ (I, Q+l , R-l ) v(t)R[1 -

,0

+ (I , 9-1 , R+l) v(t)R~dt
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From the above we can write down the approximating stochastic differential

equations analogous to (2.3 ).  These are , suppressing t-dependence state-

ments ,

di = x[N - I]dt + ,~[N - 

~~~~ ~~~~dW 1 + L[N - I]~~dW2 (4.2)

Q Q Q Q
dQ = {A [N - I]{l - ~-] - A[N - I]~- - p Q  - vR~-+vR [l -

/ Q I Q
+ /A[N - I][l - 

~
-] dW 1 - v’X[ N - I]~- dW 2 - ,/pQ dW 3

- C~4 + )~R[l - dW 5 ,

Q Q Q
dR = {2A [N - + - vR{l- ~-]}dt +

21 {N-I] dW2 +2~~ dW4

/ Q
- v ~oR[l -~~]dW 5 -

Once again we study the behavior of the system as system parameters , in this

case both N , the initial number of messages , and c , the number of

channel s become large . In fact , we relate these parameters as follows :

c = 8N, ~ being a positi ve constant. Introduce the noise processes

4,
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1(t) - Ni(t)
X (t ) =

Q(t) - Nq(t)
— , (4.3)

R(t) - Nr(t)
Z(t) = —

,

where (i(t), q(t), r ( t ) )  = u r n  (1(t)/c, Q(t)/c, R(t)/c)
N-boo -

Then an application of Ito ’s lema and identification of terms of order

vk~ and N yields the deterministic and stochastic components of the process.

Deterministi c Equations:

i’( t) = A ( l — i)

* q ’( t )  = A (l  - i)(l - q/~) - A ( 1 - i)q/~ - pq - vrq/B + vr(l - q/~)(4.4)
r ’(t) = 2A (l - i)q/ B + vrq/$ - vr(l - q/~)

From the first equation and the definition of A it follows immediately that

A (l-i) = f , the density of the arri val distribution . Note that when this

substitution is made in the second and third equations the latter are precisely

of the form of the corresponding equations of Model 1:

Correspondence Between Model 1 and Model 3

Arrivals and Re-tries

Model 1 Model 3

A (t) f(t) /~
v(t) v(t)/8

In the present model f(CD ) = 0 , and hence the arrival rate is eventually ‘ 
-

zero, and some time afterwards the system is completely empty . The present

model possesses no steady state solution, and to learn about system status at

various times it is necessary to solve (4.4) numerical ly.

16
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Stochastic Equations:

The expansion technique shows that the noise process satisfies

dx X

dv = 

~t ! + 
~ t~~~t 

(4.4)

dZ Z

where

- 
-A 0 0

= -A ( l - 2q / 8 )  -2f/ 8 + p-I- 2vr/~ ‘o(l-2q/~) (4.5)

-2Aq/~ 2f/~ + 2’or/B -‘o(l-2q/~)

and

1f(l-q/8) /fq/8 0 0 0

= /f( l-qf~J -v’fq/~ -,‘~i~ -v’vrq/~ / ‘o r ( l - q/ 8)  (4.6)

0 2v’fq/~ 0 /‘orq/8 -,“~r(l-q/8)

and is a 5-dimensional standard Wiener process wi th independent

components.

Resul t: (I, 9, R) is approximately normal as N (hence c) -‘.

( I , Q ~~R) _ N( c(f , q , r ) , cZ~~ )

Here satisfies the diffe rential equation

= 

~t~t 
+ 
~~~ 

+ B~B~ (4.7)

and

f f( l-2q/~) 2fq/$

= f(1-2q/8) f( l-2q/$) + pq + ‘or -(2fq/~ + ‘or) (4.8)

2fq/$ - (2 fq/ 8  + vr) 4fq/~ + ‘or

4 17
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As might be anticipated, the fact that

Var[I(t)] = a (t) + F(t)1l-F(t)3 (4.9)

m ay be deduced from (4 .7) .

4 18

4

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~



p.—- - ‘ - --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5. Model 4: Transmission to Completion in Model 1.

Suppose now, as may be qui te realistic, that a message attempting to

transmi t on a channel does so until completion before it discovers that it

has been “destroyed,” i.e. garbled by others--which it also contributes to

garbl ing. The analysis at once becomes much more complex because a channel

may contain any number of destroyed messages . Our formulation is that of

Model 1, save for the change described above.

The following state variables describe the system.

9(t) = the number of channels carrying good , i.e. ungarbled or unde-

stroyed messages at time t

~k
(t) = the number of channels carrying exactly k messages that are

destroyed at time t ; clearly S0
(t) 9( t) , and

O � Q + 
~~

Sk � C .
k=V

R(t) = the number of messages in ~ at time t

The transition probability scheme is summarized next. We wri te

S~(t) = 
~~ 
Sk(t)k=o

.0

* 19
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Transitions Probabilities

Q+5
(9+1 , 

~~~~~~~~~~~~~~~~ ~k’ ”’ 
R) cA[l — ____

Q+S~(Q+1 , 
~l’”~ ’ §k’”~ ’ R—1 ) vR[l —

(9-1 , S.~, .. . ,  
~k’ ”’ R) uqdt

Q
(9-1 , 

~l’ ~~~~~~~ ~k’~”’ 
R—l ) vR~dt

~~~~~~~ 
~l’ ~2

+1
~ * * ~ ~k’ ”’ ~P cA~-

(Q, S , . . . ,  S +1 ,..., R—l ) (5.1)

for k = 1, 2, 3, ... vR~—dt

S
(9~ ~l’” ’ ~k~~’ ~k+l’~”’ ~~~~ 

cX~~dt

S
(9~ ~l~1

~
* *

~ ~k’”~ ’ R+l) p~~dt

(9~ ~~~~~
‘ *

~~~~~~~
‘ 

~k ’1’ ~k+1~~’”~ ’ 
R+l )

There will be a denumerable infinity of such transitions . While it is in

- ‘  principle possible to carry out the expansion technique , we shall content our-

selves wi th a brief discussion of the deterministi c equations analogous to

(2.6). Following the example of Section 2, we can write down these differ-

ential equations for the limi ts as c~~ of 9/c , R/c , and 
~k
/c (kl ,2,...),

denoted by q , r , and

4
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q ’ = - (A + vr)(l - s~ - q) - (p + A + vr)q

= - yr + p 
~ 

ks kk=1 (5.2)

= p(k’~l)s~~1 + (A+vr)s k_ l - (k+A+vr)sk , k=l,3 ,4,5,...

s~ = 3ps 3 + (A+vr)(s 1+q) - (2p+A+vr)s2

The steady-state values , which exist under circumstances to be derived , are

obtained by solving the above system of equations wi th the derivatives set

equal to zero. To simplify , first divide through by p , putting

~~~ so~ algebra it is found that

q p  (5.3)

p +nr = 0 , so r = (0  - p)ri~ (5.4)

where 0 is the smallest sol ution of the equation

x -x = p ,  (5.5)

provided one exists.

s1 = p O

(5.6)
— 0 k

k � 2

Further analysis shows that in order for a steady-state to exist ,

0 20588

Notice that this value is much smaller than the just-intolerable val ue of

1/2 derived from Model 1. Clearly, transmission to completion of messages

provides opportunity for many more transmissions to be destroyed.

4
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6. Model ~ Transmission to Completion with Intelligent Re-tries

A natural variation of the previous model is obtained by insisting

on transmission to completion , but also allowing for an intelligent re-try

capability , as in Model 2. This means that the transitions

-‘-(9-1 , 
~l’ ~24 1 , * * ,  

~k ’”’ R-l) , and ÷(9~ ~l’~~~’ ~k+1’ ”’ R-l) are

ruled out , i.e. have probability zero in this model. Consequently the tran-

sition rates of (5.1) apply, with this change . Confining attention to the

deterministic differential equations it may be shown that these have the

form gi ven below .

q ’ = (Ai-vr)(l - s~ - q) - (A+p)q

r~ = -vr(l - - q) + p 
~ 

kskk=l (6.1)
s~ = (k+l) PSk+l + As k_i — (A+kp)s k

s~ = 3ps3 + As 1 - (A+2p)s2 + Aq *

Once again let p=A/p , n y/p, and sol ve for the steady-state values.

These are

q = p (6.2)

r = ~~p[( p)~~~1] (6.3)n i-(l+p)(e~-l)

~~
. = (6.4)

k
5 k (l+p)~-1- , k=2 ,3 ,... (6.5)

The condition for existence of a steady state is that the denominator of

(6.3) be positive , which translates into the requirement that p < 0.50855...

The latter value may be contrasted to the just-tolerable va l ue of unity

deri ved for Model 2.
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7. Numerical Results for Model 1.

In order to check the quality of the diffusion approximations , a

simulation program was written that realizes the two-dimensional Markov

process describing Model 1. The l atter was then exercised through

5 x 106 state- changes for several values of the offered load , A/p

and for several channel numbers ; the parameter a = 1 , and y/p = 0.08

in this experiment. The results were generally supportive of the approxima-

tion , as is seen by examining the fol lowing tables. Note, however, that

assessments of the mean and variance of the number of active channels , Q

are generally in closer agreement than are those for the size , R , of the
re-try population .

4.
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TABLE 1 .

Means and Variance-Covariance Values by

Simulation and Diffusion Approximation

c = 10 ; v/p = 2.0

A/p : 0.48 0.40 0.32 0.20

• E[Q] simulat. 4.79 3.99 3.19 1.99

diffus. 4.80 4.0 3.2 2 .0

Var[Q] 2.52 2.52 2.38 1.76

2.50 2.52 2.39 1.77

E[R] 65.13 9.31 3.29 0.75

57 .6 8.0 2.84 0.67

Var[R) 1470. 50.26 10.62 1.57

1466. 42.81 8.80 1.35

Cov[R,Q] 0.034 0.124 0.166 0.149

0.038 0.143 0.177 0.150
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TABLE 2.

Means and Variance-Covariance Va l ues by

Simulation and Diffusion Approximation

c = 25 ; v/ s i = 2 . 0

A/p : 0.48 0.40 0.36 0.20

E[Q] simul at . 11.95 9.97 7.98 4.99

diffus . 12.0 10.0 8.0 5.0

Var[Q] 6.32 6.31 5.98 4.41

6.26 6.30 5.97 4.42

E[R] 149.5 21.11 7.49 1.73

144.0 20.0 7.11 1.67

Var[R] 3524 . 110.2 23 .74 3.56

3666. 107 22.0 3.38

Cov[R,Q] 0.041 0.132 0.177 0.150

0.040 0.143 0.177 0.150

4-
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8. Summary and Conclusions

In this paper it has been shown that an approximate approach , using

stochastic differential equations , is effective for modeling an element of

a compl ex commun ication system. The approximation improves as c , the

number of channels ava il able for transmi ssion , becomes large. The adequacy

of the model under such conditions is suggested by the theoretical results

of Barbour (1974) and Kurtz (1971); numerical solutions of selected systems

also attest to the adequacy of the approximation . The authors wish to

gratefully acknowledge the research Support of the Office of Naval Research.
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